Continuidad en intervalos cerrados - [Detalles]
En este video se explica el concepto de continuidad en intervalos cerrados y se demuestran los teoremas de Bolzano y del Valor Intermedio.
Ejercicio Intervalos anidados - [Detalles]
En este video exploramos el Teorema de los Intervalos Anidados. Este teorema, una joya en el análisis real, nos habla de la intersección de una sucesión de intervalos cerrados y su misterioso comportamiento.
Continuidad en intervalos cerrados 2 - [Detalles]
En este video demostramos que las funciones continuas en intevalos cerrados son acotadas, y después, demostramos que alcanzan sus valores máximo y mínimo.
Intervalos y desigualdades en los números reales - [Detalles]
Definición de los diferentes tipos de intervalos en los números reales y solución de ejercicios de desigualdades de números reales.
Grupos simétricos (2) - [Detalles]
Continúa el estudio de la estructura cíclica de permutaciones, se demuestra que los subgrupos normales de Sn son precisamente aquellos que "cerrados" bajo estructura cíclica.
En este video se enuncia los axiomas de orden para el conjunto de números positivos. Se demuestra algunas consecuencias de los axiomas, se define el orden, se muestra que el orden es congruente con las operaciones y se definen los intervalos.
Razón de cambio instantáneo y derivada - [Detalles]
Se discute sobre la razón de cambio instantáneo de una función como el límite de razones de cambio en intervalos. Se define la función derivada. Se dan ejemplos de derivadas de funciones como las potenciales, raíz cuadrada, seno y las exponenciales. Se define (informalmente) la coinstante de Euler e.
Intervalos de crecimiento - [Detalles]
En este video se muestra la relación entre el signo de la derivada y la tendencia creciente/decreciente de una función. Al final se establece el criterio de la primera derivada para máximos y mínimos locales.