Presentación del curso de Calculo Diferencial e Integral I - [Detalles]
En este video se presentará el contenido del curso de Cálculo Diferencial e Integral I. Se exponen de manera informal los problemas que motivan el Cálculo Diferencial e Integral y se enfatiza la necesidad de la discusión profunda de los conceptos de aproximación (supremos/ínfimos, límites) como fundamento del Cálculo. Presentación del curso de Calculo Diferencial e Integral I Contenido: 00:00 ¿Qué significa "cálculo"? 02:37 ¿Qué se entiende actualmente por cálculo? 04:15 ¿Qué es el Cálculo Diferencial? 07:02 ¿Qué es el Cálculo Integral? 08:27 Relación entre el Cálculo Diferencial e Integral 09:27 La Derivada 11:27 La Integral 11:54 El Análisis Real 15:05 Temario del Curso: 1. Números Reales 17:03 Temario del Curso: 2. Conjuntos y Funciones de Números Reales 18:50 Temario del Curso: 3. Límites de Funciones de Variable Real 19:24 Temario del Curso: 4. Continuidad 20:30 Temario del Curso: 5. Derivadas Créditos. Tabla de contenido: Carlos Moisés Arriaga Osante.
Teorema del valor medio para la integral - [Detalles]
Teorema valor medio, valor medio generalizado, valor medio integral, valor medio generalizado integral
Funciones trigonométricas (Parte 2) - [Detalles]
Estudio de las funciones trigonométricas tangente, secante, cosecante y cotangente. Un vistazo a algunas de las funciones trigonométricas inversas.
Razones trigonométricas - [Detalles]
Hablamos sobre las razones trigonométricas: coseno, seno, tangente, secante, cosecante y cotangente, las cuales están relacionadas con un triángulo rectángulo, escritas en termino de sus catetos e hipotenusa.
Teorema de existencia y unicidad. Ecuación integral asociada - [Detalles]
Damos los primeros detalles para la demostración del Teorema de existencia y unicidad de Picard. Encontramos una manera equivalente de resolver un problema de condición inicial, que es resolviendo una ecuación integral asociada.
Motivación de integral y sumas superiores e inferiores - [Detalles]
Motivación de la integral y sumas
Propiedades básicas de la integral definida - [Detalles]
Propiedades básicas de la integral definida, aditividad, suma, producto por una constante
Criterio de la integral - [Detalles]
Estudio al criterio de la integral para las series como criterio de convergencia.
Unidad IV: Integración compleja - Tarea - [Detalles]
En esta tarea en equipo se evalúan temas de la cuarta unidad tales como integral de funciones a lo largo de trayectorias, la fórmula integral de Cauchy y el teorema de Liouville.
33. Integrales de funciones híbridas - [Detalles]
Ahora en esta entrada, ya armados con el concepto de función híbrida, veremos la definición de la integral de una función híbrida, con esto luego podremos pasar a la integral de una función compleja.
34. Integrales de contorno I - [Detalles]
En esta entrada veremos, ahora sí, la definición de integral compleja, con todas las de la ley, solo que descubriremos que hay varios tipos de integral dependiendo de lo que queramos hacer.
36. Teorema integral de Cauchy - [Detalles]
El Teorema Integral de Cauchy es un teorema importantísimo en el estudio de la variable compleja, veremos sus diferentes versiones y demostraciones.
37. Consecuencias del teorema integral de Cauchy - [Detalles]
En esta entrada veremos unas cuantas consecuencias del Teorema Integral de Cauchy, tales como el Teorema de Liouville, el Teorema Fundamental del Álgebra, el Teorema de Morera y más.
38. Teorema integral de Cauchy versión homótopica (opcional) - [Detalles]
Dos de las nociones básicas de la topología son la de homotopía y homología. La versión local del teorema integral de Cauchy, enfatiza la topología del dominio y cómo el camino se encuentra dentro de él. Para mejorar nuestra comprensión de este hecho, examinamos estas cuestiones topológicas con más detalle.
37. Consecuencias del Teorema Integral de Cauchy - [Detalles]
Veamos unos ejercicios sencillos para asentar bases de los teoremas importantes que se siguen del Teorema Integral de Cauchy
COMAL: Cálculo Diferencial e Integral I - [Detalles]
Este curso de Cálculo Diferencial e Integral I introduce desde motivaciones históricas hasta temas de números reales, funciones, límites, derivadas, sucesiones y algo de series. Con actividades prácticas, videos explicativos y ejercicios, se espera que quienes usen este material conozcan con suficiente profundidad los temas propuestos y desarrollen habilidades de demostración. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323.
Teorema de Existencia y Unicidad - Ecuación Integral, Funciones Lipschitzianas y Lema de Gronwall - [Detalles]
Se desarrolla una teoría preliminar necesaria para demostrar el teorema de existencia y unicidad, en dicha teoría se presentan las ecuaciones integrales, las funciones lipschitzianas y el lema de Gronwall
Definición de la integral definida - [Detalles]
Continuación de sumas de Riemann, condición de Riemann
Cálculo de momento y centro de masa - [Detalles]
Estudio de calculo de momentos y centro de masa con el concepto de la integral.
Aplicación de la integración al concepto de trabajo - [Detalles]
Aplicación en el área de la fisica la integral en el concepto de trabajo.
Fuerza y presión hidrostatica - [Detalles]
Aplicación de la integral en el concepto de fuerza y presión en la hidrostatica.
Aplicación en el área de la probabilidad la integral definida.
Área bajo la curva - [Detalles]
Se aborda el tema del concepto de la integral con las sumas de Riemann y se dan tres ejemplos de su aplicación.
COMAL: Cálculo Diferencial e Integral I - [Detalles]
Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522.
32. Trayectorias, curvas y contornos en el plano complejo $\mathbb{C}$ - [Detalles]
Empezamos la unidad 4, en esta primera entrada, como preliminares, veremos algunas definiciones tales como la de una función híbrida, trayectoria o curva y algunas más, que mas adelante nos permitirán dar una definición de integral compleja.
36. Teorema Integral de Cauchy - [Detalles]
Hagamos unos ejercicios que nos ayudarán a entender mejor uno de los teoremas más importantes del curso.
38. Teorema Integral de Cauchy, versión homotópica. - [Detalles]
Repasaremos los conceptos de homología y homotopía y la reformulación del Teorema de Cauchy para estos aspectos.
39. Teoremas de Weierstrass - [Detalles]
Repasemos conceptos importantes acerca de sucesiones de funciones que nos serán de utilidad para aplicar el Teorema Integral de Cauchy.
Bienvenida Calculo I - [Detalles]
Bienvenida al curso Cálculo Diferencial e Integral I. Semestre 2022-1 Iniciamos el 20 de septiembre de 2022. Contacto: David Meza Alcántara dmeza@ciencias.unam.mx Jorge Arturo Quiroz Cabrera arthmithrandir@ciencias.unam.mx Luis David Reyes Sáenz luisdavidr@ciencias.unam.mx Classroom: https://classroom.google.com/c/Mzc1MTYwNjAxOTc4?cjc=lj6bwu7
COMAL: Cálculo Diferencial e Integal II - [Detalles]
Curso de Cálculo Diferencial e Integral II en notas tipo blog. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323.
COMAL: Cálculo Diferencial e Integal III - [Detalles]
Curso de Cálculo Diferencial e Integral III en notas tipo blog. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323.