Conjuntos generadores e independencia lineal - [Detalles]
Definimos qué es un conjunto generador de vectores. Definimos los conceptos de dependencia e independencia lineal. Vemos ejemplos y propiedades básicas.
Ecuaciones lineales homogéneas de segundo orden. Independencia lineal de soluciones - [Detalles]
Terminamos el estudio de las soluciones a ecuaciones lineales homogéneas de segundo orden, con el concepto de dependencia e independencia lineal de soluciones. Estudiamos la relación entre este nuevo concepto con los de conjunto fundamental de soluciones y el Wronskiano.
Independencia de eventos - [Detalles]
Presentamos el concepto de independencia de eventos, que se relaciona cercanamente con la medida de probabilidad condicional.
Cuestionario sobre dependencia e independencia lineal - [Detalles]
Ponemos en práctica las definiciones que se revisaron respecto a la independencia lineal son una serie de afirmaciones las cuáles nos muestran si la definición fue comprendida o no, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
Dependencia e independencia lineal - [Detalles]
Damos las definiciones formales de combinación lineal, dependencia lineal e independencia lineal. También usamos ejemplos para explicar cuando un conjunto de vectores cumple con alguna de estas definiciones
Determinantes de vectores e independencia lineal - [Detalles]
Definimos determinantes de vectores con respecto a una base. Vemos que los determinantes son las únicas formas n-lineales alternantes y que detectan bases.
Diapositivas sobre dependencia e independencia lineal - [Detalles]
Seguimos con el estudio de los espacios vectoriales pero ahora dando una definición que es base en el desarrollo de este tema que son las combinaciones lineales y si un conjunto de vectores con un conjunto linealmente independiente, se proporcionan varias definiciones equivalentes de esta última definición.
Ejercicio 1 dependencia o independencia lineal - [Detalles]
Tomamos tres vectores del plano cartesiano, mostramos que el conjunto de estos tres vectores es linealmente dependiente, y mostramos porque no puede ser linealmente independiente.
Mini-cuestionario: Determinantes de vectores e independencia lineal - [Detalles]
Mini-cuestionario para verificar el entendimiento de qué sucede en términos del determinante y la dependencia lineal.
Nota 30. Dependencia e independencia lineal - [Detalles]
En esta nota definiremos y veremos ejemplos de conjuntos linealmente dependientes y conjuntos linealmente independientes, veremos que esta idea está íntimamente relacionada a distinguir cuándo un conjunto de vectores tiene entre sus elementos algún vector que sea combinación lineal de los otros.
Los espacios vectoriales $\mathbb{R}^2$ y $\mathbb{R}^3$ - [Detalles]
Hablamos de R^2 y R^3 como espacios vectoriales. Definimos combinaciones lineales, independencia lineal y bases. Vemos varios ejemplos.
El espacio vectorial $\mathbb{R}^n$ - [Detalles]
Damos una introducción al espacio vectorial R^n. Definimos combinaciones lineales, bases e independencia lineal. Vemos varios ejemplos.