Resultados de búsqueda: geometría compleja

73 resultados encontrados

  • Sitio web

    COMAL: Variable Compleja I - [Detalles]

    Cubrimos el temario oficial de Variable Compleja I viendo notas, mini-cuestionarios, tareas, exámenes, etc.

  • Cuestionario

    20. Exponencial compleja - [Detalles]

    Repasemos unos cuantos detalles acerca de la definición y propiedades de la, ahora sí bien definida, exponencial compleja.

  • Blog

    12. Funciones de variable compleja. Definiciones y preliminares. - [Detalles]

    Comenzamos con el concepto de función, un objeto fundamental del estudio de la Variable Compleja, nos apoyaremos en nuestro conocimiento sobre funciones de $\mathbb{R}^2$ en $\mathbb{R}^2$ y notaremos cuales son sus diferencias y que propiedades se tienen en las funciones que toman valores en $\mathbb{C}$.

  • Blog

    17. Ecuaciones de Cauchy-Riemann. Condiciones necesarias para la diferenciabilidad compleja - [Detalles]

    En esta entrada conoceremos lo que son las ecuaciones de Cauchy-Riemann y su utilidad para estudiar la analicidad en funciones de variable compleja.

  • Blog

    20. Exponencial compleja - [Detalles]

    Ahora vamos a definir unas cuantas de las funciones complejas mas importantes, empezando por la exponencial compleja. y que son mas ricas en propiedades y por lo tanto más interesantes para estudiar.

  • Evaluación

    Unidad II: Analicidad y funciones de variable compleja - Tarea - [Detalles]

    En esta tarea en equipo se evalúan temas de la segunda unidad tales como límites y continuidad de funciones de variable compleja, diferenciabilidad en el sentido complejo y las ecuaciones de Cauchy-Riemann, entre otras.

  • Evaluación

    Unidad II: Analicidad y funciones de variable compleja - Examen - [Detalles]

    En esta tarea en equipo se evalúan temas de la segunda unidad tales como límites y continuidad de funciones de variable compleja, diferenciabilidad en el sentido complejo y las ecuaciones de Cauchy-Riemann, entre otras.

  • Video

    Video: Introducción a la Geometría Euclidiana - [Detalles]

    Explicamos la importancia de los Elementos de Euclides para el desarrollo de la geometría

  • Diapositivas

    Diapositivas del plano cartesiano: coordenadas y lugares geométricos - [Detalles]

    Damos inicio al curso dando las definiciones que nos acompañarán durante todo el curso de geometría analítica, la definición de lugar geométrico nos acompañará no solo este semestre sino en todo el curso completo de geometría analítica, damos ejemplos y ejercicios sencillos en el plano cartesiano el cual será el lugar de trabajo más recurrido en este primer curso.

  • Curso

    COMAL: Geometría Moderna I - [Detalles]

    Cubrimos el temario oficial de Geometría Moderna I con el uso de notas, videos e interactivos de GeoGebra. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE103320.

  • Curso

    COMAL: Geometría Analítica I - [Detalles]

    Cubrimos el temario oficial de la materia Geometría Analítica I. Tenemos notas, videos y cuestionarios para cada tema. Además, en cada unidad hay guías de estudio y actividades de autoevaluación. Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522.

  • Interactivo

    Interactivo: Fórmula de Euler (en geometría) - [Detalles]

    El interactivo contiene la demostración de la fórmula de Euler en geometría, la cual relaciona la distancia del circuncentro al incentro con sus correspondientes radios. Se incluyen figuras interactivas que guían la demostración.

  • Interactivo

    Interactivo: Introducción a la Geometría Moderna - [Detalles]

    Interactivo introductorio al curso "Geometría Moderna I". Aquí el alumno podrá navegar a distintos apartados donde se encuentran definiciones con figuras interactivas, las cuales se consideran necesarias para iniciar con el curso, tales como: recta, segmento, rayo, ángulo, bisectriz,..., triángulos, circunferencia.

  • Interactivo

    Interactivo: Geometría del triángulo - [Detalles]

    En este interactivo el estudiante podrá navegar por apartados donde se definen el triángulo medial y órtico y se demuestran los siguientes teoremas importantes relacionados a la geometría del triángulo: la recta de Euler, la circunferencia de los nueve puntos, el teorema de Ceva y su recíproco, el teorema de Menelao y su recíproco, el teorema de la bisectriz, el teorema de Pappus, el teorema de Desargues y su recíproco, un teorema sobre el circunradio del triángulo medial y un teorema sobre la concurrencia de las bisectrices internas y externas. Todo acompañado de figuras interactivas que guían las demostraciones.

  • Sitio web

    Nota histórica: Menelao de Alejandría - [Detalles]

    En este espacio, el alumno podrá explorar la vida del astrónomo Menelao de Alejandría (no de Esparta) y descubrir sus valiosas contribuciones al desarrollo de la geometría en general y en especial de la geometría moderna. Además, encontrará enlaces que lo redirigirán a los teoremas más relevantes de su autoría.

  • Video

    Soluciones de una ecuación cuadrática - [Detalles]

    Hablamos sobre las posibles soluciones de una ecuación cuadrática (damos un breve recordatorio sobre la formula general o más popularmente conocida como "chicharronera"). Vemos gráficamente cuando una ecuación cuadrática tiene dos, una o ninguna solución real. Definimos el discriminante y haciendo uso de el vemos cuando la ecuación cuadrática tiene una o dos soluciones reales, o cuando su solución es compleja. 

  • Video

    Sistemas lineales homogéneos con coeficientes constantes. Valores propios complejos - [Detalles]

    Analizamos el caso cuando la matriz asociada al sistema tiene valores propios complejos. Encontramos dos soluciones reales dada una solución compleja formada con un valor y un vector propios complejos.

  • Blog

    La conjugación de números complejos - [Detalles]

    Definimos la operación conjugado en el campo de los reales, enunciamos propiedades del conjugado y demostramos algunas de ellas. De igual manera definimos la parte real e imaginaria de un número compleja y sus relaciones con el conjugado.

  • Blog

    Problemas de conjugación compleja - [Detalles]

    Resolvemos ejercicios básicos sobre el conjugado de los complejos.

  • Blog

    La norma en los complejos - [Detalles]

    Definimos la norma de los complejos y demostramos propiedades de la norma compleja también demostramos una propiedad muy importante tanto para los reales como para los complejos que es la propiedad de la desigualdad del triángulo tanto para la aprte real tanto para la métrica de la suma de 2 números complejos.

  • Cuestionario

    12. Funciones de variable compleja. Definiciones y preliminares. - [Detalles]

    Chequemos un poquito de la definición de función y de sus partes real e imaginaria.

  • Cuestionario

    17. Ecuaciones de Cauchy-Riemann. Condiciones necesarias para la diferenciabilidad compleja - [Detalles]

    Veamos una primera entrada de las ecuaciones C-R.

  • Cuestionario

    18. Ecuaciones de Cauchy-Riemann. Condiciones suficientes para la diferenciabilidad compleja - [Detalles]

    Ahora chequemos más propiedades de las ecuaciones C-R.

  • Blog

    13. Funciones multivaluadas - [Detalles]

    Ya que comenzamos nuestro estudio de las funciones de variable compleja, debemos introducir unas funciones llamadas "funciones multivaluadas" que no necesariamente cumplen con la definición usual de función, pero son de vital importancia cuando se habla de complejos.

  • Blog

    14. Límites en $\mathbb{C}$ - [Detalles]

    En esta entrada conoceremos el límite de una función de variable compleja, cuya definición no es lejana a la de funciones de variable real, para luego poder abrirnos paso hacia la continuidad.

  • Blog

    16. Diferenciabilidad en el sentido complejo - [Detalles]

    Introducimos por fin el concepto de diferenciabilidad en el sentido complejo, veremos la definición de derivada de una función compleja y estudiaremos cuando una función es derivable y cuando no y las propiedades de estas.

  • Blog

    18. Ecuaciones de Cauchy-Riemann. Condiciones suficientes para la diferenciabilidad compleja - [Detalles]

    Seguimos con las ecuaciones de Cauchy-Riemann y ahora vemos mas propiedades acerca de las funciones que satisfacen estas ecuaciones.

  • Guía de estudio

    Unidad II: Analicidad y funciones de variable compleja - Tarea - Soluciones - [Detalles]

    Se presentan las soluciones detalladas a la tarea en equipo de la segunda unidad.

  • Guía de estudio

    Unidad II: Analicidad y funciones de variable compleja - Examen - Soluciones - [Detalles]

    Se presentan las soluciones detalladas al examen de la segunda unidad.

  • Evaluación

    Unidad IV: Integración compleja - Tarea - [Detalles]

    En esta tarea en equipo se evalúan temas de la cuarta unidad tales como integral de funciones a lo largo de trayectorias, la fórmula integral de Cauchy y el teorema de Liouville.

  • Guía de estudio

    Unidad IV: Integración compleja - Tarea - Soluciones - [Detalles]

    Se presentan las soluciones detalladas a la tarea en equipo de la cuarta unidad.

  • Evaluación

    Unidad IV: Integración compleja - Examen - [Detalles]

    En esta tarea en equipo se evalúan temas de la tercera unidad tales como tipos de convergencia de series, criterios de convergencia de series y representación en series de funciones elementales.

  • Guía de estudio

    Unidad IV: Integración compleja - Examen - Soluciones - [Detalles]

    Se presentan las soluciones detalladas al examen de la cuarta unidad.

  • Blog

    32. Trayectorias, curvas y contornos en el plano complejo $\mathbb{C}$ - [Detalles]

    Empezamos la unidad 4, en esta primera entrada, como preliminares, veremos algunas definiciones tales como la de una función híbrida, trayectoria o curva y algunas más, que mas adelante nos permitirán dar una definición de integral compleja.

  • Blog

    33. Integrales de funciones híbridas - [Detalles]

    Ahora en esta entrada, ya armados con el concepto de función híbrida, veremos la definición de la integral de una función híbrida, con esto luego podremos pasar a la integral de una función compleja.

  • Blog

    34. Integrales de contorno I - [Detalles]

    En esta entrada veremos, ahora sí, la definición de integral compleja, con todas las de la ley, solo que descubriremos que hay varios tipos de integral dependiendo de lo que queramos hacer.

  • Blog

    36. Teorema integral de Cauchy - [Detalles]

    El Teorema Integral de Cauchy es un teorema importantísimo en el estudio de la variable compleja, veremos sus diferentes versiones y demostraciones.

  • Cuestionario

    28. Sucesiones y series de funciones - [Detalles]

    Ya que vimos sucesiones y series de números complejos, ahora toca ver los mismos conceptos pero para funciones de variable compleja. Veamos un par de preguntas para ver si se entendió bien.

  • Cuestionario

    26. Funciones complejas como transformaciones. Técnicas de graficación - [Detalles]

    Para terminar la unidad, veremos ejercicios de cómo modifican funciones de variable compleja conjuntos del plano en el plano.

  • Práctica

    Mundo de la aspiradora - [Detalles]

    Se presenta un agente que interactúa en el mundo de la aspiradora, tal como se presenta en Russel & Norvig (2021). Una versión más compleja de este mundo puede encontrarse en https://github.com/rayheberer/AI-A-Modern-Approach/tree/master/Chapter%202%20Intelligent%20Agents.

  • Blog

    Formas cuadráticas hermitianas - [Detalles]

    El análogo complejo a las formas cuadráticas son las formas cuadráticas hermitianas. En esta entrada las definiremos, enfatizaremos algunas diferencias con el caso real y veremos algunas de sus propiedades. Al final enunciaremos una versión compleja del teorema de Gauss.

  • Blog

    El teorema espectral y de descomposición polar complejos - [Detalles]

    En esta entrada veremos el análogo al teorema espectral real, pero para el caso complejo. En el caso real el resultado es para transformaciones o matrices simétricas. En el caso complejo eso no funcionará. Primero, tenemos que introducir a las transformaciones hermitianas, que serán las que sí tendrán un teorema espectral. Ya eligiendo la noción correcta, las demostraciones se parecen mucho a las del caso real, así que solamente las esbozaremos y en caso de ser necesario haremos aclaraciones pertinentes para la versión compleja.

  • Blog

    Ángulos, norma, distancia y desigualdad de Minkowski - [Detalles]

    Definimos varias nociones fundamentales de la geometría de espacios vectoriales: ángulos, norma y distancia. Probamos la desigualdad de Mikowski.

  • Video

    Sistemas de $2 imes 2$ y su geometría - [Detalles]

    Se da una representación geométrica para las ecuaciones lineales y los sistemas de ecuaciones lineales de 2x2. También se explica la representación geométrica de las soluciones para un sistema de ecuaciones lineales de 2x2.

  • Lección

    Introducción, nociones comunes y postulados de Euclides - [Detalles]

    Damos la introducción al curso. Para ello hablamos de las definiciones elementales en geometría. Planteamos los postulados de Euclides, nociones comunes y algunas de sus consecuencias.

  • Blog

    Definiciones - [Detalles]

    Introducción al curso de Geometría Moderna I basado en el temario oficial de la Facultad de Ciencias de la UNAM.

  • Video

    Sistemas de dos ecuaciones de primer orden. El plano fase - [Detalles]

    Comenzamos la última unidad del curso estudiando la geometría de las soluciones a un sistema de dos ecuaciones de primer orden con coeficientes constantes, definiendo el plano fase y analizando un par de ejemplos.

  • Diapositivas

    Diapositivas sobre sistemas de ecuaciones lineales, sus soluciones y su matriz de coeficientes - [Detalles]

    Comenzamos el tema con la definición de lo que es un sistema de ecuaciones lineal,; hablamos un poco sobre las soluciones de estos sistemas, su geometría e interpretación analítica y cualitativa. Damos un repaso al tema de matrices, recordeando las operaciones elementales, las operaciones renglón y asociamos en una matriz los coeficientes del sistema de ecuaciones lineal.

  • Diapositivas

    Diapositivas del espacio cartesiano: coordenadas y lugares geométricos - [Detalles]

    Continuamos con la definición de lugar geométrico pero con la diferencia que ahora aplicamos esta definición en el espacio cartesiano, dando una introducción de éste. El espacio cartesiano se estudiará con mayor profundidad en la segunda parte del curso de geometría analítica.

  • Guía de estudio

    Lista de ejercicios sobre el plano y el espacio cartesiano - [Detalles]

    Proponemos una pequeña lista de ejercicios respecto a esta primera unidad de geometría analítica.

  • Guía de estudio

    Lista de ejercicios sobre trigonometría y más sistemas de coordenadas - [Detalles]

    Proponemos una pequeña lista de ejercicios respecto a esta primera unidad de geometría analítica.

  • Curso

    COMAL: Geometría Moderna I - [Detalles]

    Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522.

  • Proyecto

    Proyecto: Caminata por el jardín y sistemas lineales en el cubo - [Detalles]

    En este proyecto estudiamos los sistemas de ecuaciones lineales en el cubo unitario de altas dimensiones para resolver un problema de geometría discreta.

  • Blog

    6. Lugares geométricos en $\mathbb{C}$ - [Detalles]

    Aplicando nuestros conocimientos de geometría analítica, analizaremos como se describen los lugares geométricos tales como rectas, circunferencias, elipses, etc. pero ahora dando unas nuevas ecuaciones en los complejos.

  • Evaluación

    Unidad I: Introducción y preliminares - Tarea - [Detalles]

    En esta tarea en equipo se evalúan temas de la primera unidad tales como operaciones de números complejos, geometría del espacio complejo y el plano complejo extendido, por mencionar algunos.

  • Evaluación

    Unidad I: Introducción y preliminares - Examen - [Detalles]

    En este examen se evalúan temas de la primera unidad tales como operaciones de números complejos, geometría del espacio complejo y el plano complejo extendido, por mencionar algunos.

  • Blog

    24. Transformaciones del plano complejo $\mathbb{C}$ - [Detalles]

    Ya hablamos bastante acerca de las funciones complejas, su continuidad y derivadas, ahora revisaremos un poco más afondo la geometría, por medio de las transformaciones, veremos varios tipos de estas y como afectan al plano y a subconjuntos de este.

  • Cuestionario

    25. Transformaciones lineales y transformaciones de Möbius - [Detalles]

    Ahora revisemos un tipo de transformaciones complejas mas interesantes, de cierto tipo que nos permiten observar más geometría en el plano complejo.

  • Cuestionario

    25. Transformaciones lineales y transformaciones de Möbius - [Detalles]

    Ahora revisemos un tipo de transformaciones complejas mas interesantes, de cierto tipo que nos permiten observar más geometría en el plano complejo.

  • Capítulo del libro

    Geometría elemental - [Detalles]

    En este capítulo de Cimientos Matemáticos, exploraremos el mundo de las formas y sus propiedades. Definiremos conceptos como punto, línea y ángulo, y aprenderemos a clasificar y medir ángulos. Estudiaremos las relaciones entre rectas, como paralelismo y perpendicularidad, y descubriremos la mediatriz y la bisectriz de un segmento. Veremos el estudio de los triángulos como clasificarlos. Finalmente, exploraremos el teorema de Pitágoras para triángulos rectángulos.

  • Capítulo del libro

    Nociones de trigonometría - [Detalles]

    En este capitulo de Cimientos matemáticos exploraremos algunos conceptos fundamentales en trigonometría y geometría. Veremos con la conversión de grados a radianes y una introducción del número pi. Luego, miraremos como realizar la medición de ángulos y arcos de circunferencia, así como la longitud de arco. Abordaremos conceptos como triángulos semejantes y razones trigonométricas. Además, exploraremos el plano cartesiano, la distancia entre dos puntos en el plano y la circunferencia unitaria.

  • Capítulo del libro

    Ecuaciones de la línea recta - [Detalles]

    En este capitulo de Cimientos Matemáticos abordaremos conceptos clave de geometría analítica, como lugares geométricos y ecuaciones. Exploraremos la forma general de la ecuación de la línea recta y su expresión en la forma pendiente-ordenada al origen. También analizaremos la relación entre la inclinación y la pendiente de una recta, así como las propiedades de rectas paralelas y perpendiculares.

  • Cuestionario

    Cuestionario de geometría elemental - [Detalles]

    Este es un cuestionario para repasar el Módulo 7 del texto "Cimientos Matemáticos" donde se abarcan temas como: la definición de punto, segmento, línea recta, circunferencia, ángulo, tipos de ángulos, tipos de rectas, etc.

  • Interactivo

    Interactivo: Teoremas selectos de geometría moderna - [Detalles]

    En este interactivo el alumno podrá navegar a través de apartados que contienen las demostraciones de las leyes de senos y cosenos, la del teorema de Stewart y la de un corolario. Además, para iniciar se definen los conceptos: líneas y puntos conjugados isogonales, simedianas y punto simediano. Incluye figuras interactivas que guían las demostraciones.

  • Sitio web

    Nota histórica: Claudio Ptolomeo - [Detalles]

    En este espacio, el alumno podrá explorar la vida del astrónomo y geógrafo Claudio Ptolomeo. Descubrirá sus valiosas contribuciones al desarrollo tanto de la astronomía como de la geometría moderna. Además, encontrará enlaces que lo redirigirán a los teoremas más relevantes de su autoría.

  • Sitio web

    Nota histórica: Thales de Mileto - [Detalles]

    En este espacio, el alumno podrá explorar la vida del filósofo y matemático Tales de Mileto, también descubrirá sus valiosas contribuciones al desarrollo de la geometría moderna y a las matemáticas en general. Además incluye enlaces que redirigen a los teoremas más relevantes de su autoría.

  • Sitio web

    Nota histórica: Euclides de Alejandría - [Detalles]

    En este espacio, el alumno podrá explorar la vida del matemático Euclides y descubrir sus valiosas contribuciones al desarrollo de las matemáticas y por ende de la geometría moderna.

  • Sitio web

    Nota histórica: Pappus de Alejandría - [Detalles]

    En este espacio, el alumno podrá explorar la vida del geómetra Pappus de Alejandría y descubrir sus valiosas contribuciones al desarrollo de la geometría moderna. Además, encontrará enlaces que lo redirigirán a los teoremas más relevantes de su autoría.

  • Sitio web

    Nota histórica: Girard Desargues - [Detalles]

    En este espacio, el alumno podrá explorar la vida del matemático Girard Desargues y descubrir sus valiosas contribuciones al desarrollo de la geometría proyectiva y moderna. Además contiene enlaces que redirigen a los teoremas más relevantes de su autoría.

  • Sitio web

    Nota histórica: Blaise Pascal - [Detalles]

    En este espacio, el alumno podrá explorar la vida del matemático y filósofo Blaise Pascal. Descubrirá sus valiosas contribuciones al desarrollo, en especial de la geometría moderna. Además contiene enlaces que redirigen a algunos teoremas relevantes de su autoría.

  • Sitio web

    Nota histórica: Giovanni Ceva - [Detalles]

    En este espacio, el alumno podrá explorar la vida del geómetra Giovanni Ceva. Descubrirá sus valiosas contribuciones al desarrollo, en especial de la geometría moderna. Además contiene enlaces que redirigen a algunos teoremas relevantes de su autoría.

  • Sitio web

    Nota histórica: William Wallace - [Detalles]

    En este espacio, el alumno podrá explorar la vida del matemático y filósofo William Wallace y descubrirá sus valiosas contribuciones al desarrollo, en especial de la geometría moderna. Además contiene enlaces que redirigen a algunos teoremas relevantes de su autoría.

  • Sitio web

    Nota histórica: Charles Julien Brianchon - [Detalles]

    En este espacio, el alumno podrá explorar la vida del matemático Blaise Pascal y descubrirá sus valiosas contribuciones al desarrollo, en especial de la geometría moderna. Además contiene enlaces que redirigen a algunos teoremas relevantes de su autoría.