Ecuaciones lineales no homogéneas de primer orden. Solución por factor integrante - [Detalles]
Resolvemos el caso general de una ecuación lineal no homogénea de primer orden, por el método de factor integrante.
Ecuaciones lineales no homogéneas de primer orden. Solución por factor integrante (Ejemplos) - [Detalles]
Resolvemos un par de ejemplos de ecuaciones lineales no homogéneas de primer orden, por el método de factor integrante.
Ecuaciones diferenciales no exactas. Método del factor integrante (Ejemplos) - [Detalles]
Resolvemos un par de ecuaciones diferenciales no exactas por el método de factor integrante.
Ecuaciones lineales no homogéneas de primer orden. Solución por variación de parámetros (Ejemplos) - [Detalles]
Resolvemos dos ecuaciones por el método de variación de parámetros, una de ellas la resolvimos por el método de factor integrante en un video anterior, esto para comprobar que los dos métodos llevan a la misma solución.
Ecuaciones diferenciales no exactas. Método del factor integrante - [Detalles]
Resolvemos el problema que surge cuando una ecuación no cumple con la definición de ser exacta.
Problemas de grado, evaluación de polinomios, teorema del residuo y del factor - [Detalles]
Resolvemos problemas referentes al tema de polinomios como la evaluación de polinomios, la aplicación de divisibilidad y la aplicación del teorema del factor.
Teorema del Factor - [Detalles]
Explicamos el Teorema del Residuo, el cual nos dice que: El residuo de dividir un polinomio "p(x)" entre "x-a" (con "a" un escalar), es "p(a)", es decir que existe "q(x)" tal que: "p(x)=(x-a)*q(x)+r", con el residuo "r=p(a)". Mostramos algunos ejemplos y demostramos el teorema.
Algortimo de la división, teorema del factor y del residuo - [Detalles]
Acoplamos temas vistos en los enteros pero ahora para el anillo de los polinomios como el tema de divisibiliad y el teorema del algoritmo de la división conjuntamente con su demostración y su aplicación en la práctica. Asimismo se define lo que es un polinomio irreducible así como el teorema del facotor y el del residuo.
Problemas de MCD, algortimo de Euclides e irreducibilidad en R[x] - [Detalles]
Resolvemos problemas propuestos que involucran los temas del máximo compun divisor en los polinomios mediante el algortimo de Euclides y la factorización de polinomios ocupando el teorema del factor.