Recursividad, Recursión doble; Fibonacci. - [Detalles]
Recursión doble, Fibonacci - Significado y cómo se ve la recursión doble. Ejemplo del código.
Recursividad, Recursión doble; Pascal. - [Detalles]
Recursión doble, triángulo de Pascal - Significado y cómo se ve la recursión doble. Ejemplo de código con el triángulo de Pastel.
Recursividad, Recursión doble; torres de Hanoi. - [Detalles]
Recursión doble, Torres de Hannoi - Significado y cómo se ve la recursión doble. Ejemplo de código con las torres de Hannoi.
Usamos las tablas de verdad para definir la negación lógica de una proposición, damos ejemplos de la negación para proposiciones lógicas que podemos entender con el lenguaje cotidiano.
Propiedades de la negación, conjunción y disyunción - [Detalles]
Revisamos las propiedades de tres conectores: la negación, la disyunción y la conjunción. Hablamos de cuándo son dos proposiciones equivalentes.
Propiedades de la negación, conjunción y disyunción de proposiciones. - [Detalles]
Se da la definición de formas proposicionales equivalentes. Mediante tablas de verdad se demuestran las leyes o propiedades de conmutatividad, asociatividad, distributivita y las Leyes de De Morgan
Diapositivas sobre proposiciones - [Detalles]
Definimos lo que es una proposición y la negación de una proposición acompañado de varios ejemplos para fijas los conceptos básicos de las diapositivas presentadas.
Dispositivas sobre las propiedades de la negación, conjunción y disyunción - [Detalles]
Tomando las definicones pasadas de conjunción y disyunción ahora enunciamos una serie de propiedades que tienen, estas propiedades son demostradas desde el punto de vista de equivalencias de formas proposicionales.
Problemas de proposiciones y conectores - [Detalles]
Hacemos algunos ejercicios con proposiciones y tres conectores lógicos: la negación, la disyunción y la conjunción. Y damos su razonamiento.
Negaciones de proposiciones con conectores y cuantificadores - [Detalles]
Vemos cómo se niegan los cuantificadores lógicos. Repasamos la negación con conectores lógicos.
Combinatoria: el ejemplo del poker - [Detalles]
Analizamos el póker como un ejemplo de combinatoria. Usando combinatoria damos un ranking para las diez manos del póker, las cuale son combinaciones de cartas que podemos hacer para ganar. Las manos son: escalera real, escalera de color, poker, full, color, escalera, trio, doble pareja, pareja y carta alta.
Diapositivas sobre proposiciones bicondicionales - [Detalles]
Mostramos otro tipo de condicionales dentro de las proposiciones matemáticas que son las bicondicionales o más conocida como si y solo si o doble implicación, estas condicionales solo son verdaderas si ambas proposiciones lo son, demostramos una serie de propiedades de este tipo de enunciados desde el punto de vista de equivalencias de formas proposicionales.
Diapositivas sobre demostraciones de conjuntos - [Detalles]
Se muestran las diferentes maneras por las cuales se demuestran proposiciones de conjuntos como la demostración de una contención; la igualdad de conjuntos por doble contención, por si y solo si; demostración por casos la cual es ocupada para demostrar propiedades de conjuntos en donde está involucrada la operación unión.
Los Elementos de Euclides: Teorema 41 - [Detalles]
En este video cubrimos el Teorema 41 de Los Elementos de Euclides. Aquí se demuestra que si un paralelogramo y un triángulo tienen la misma base y están entre las mismas paralelas, determinadas por la base del triángulo y la paralela que pasa por el vértice opuesto a la base, entonces el área del paralelogramo es el doble que el área del triángulo.
Álgebra de conjuntos - [Detalles]
En esta nueva entrada abordaremos a las operaciones entre conjuntos desde una perspectiva diferente: el álgebra. A traves de varios ejemplos veremos que existe otra forma de probar la igualdad entre conjuntos sin necesidad de usar la demostración por doble contención.
El grado de un vértice - [Detalles]
En este video se definen la vecindad, el grado de un vértice y el grado promedio de una gráfica. Se prueba el primer teorema en Teoría de Gráficas, a saber, que la suma de todos los grados en una gráfica es el doble del número de aristas. Se definen y estudian también las gráficas regulares y la secuencia de grados de una gráfica.
Funciones circulares de suma y diferencias - [Detalles]
En este capitulo de Cimientos Matemáticos daremos continuación al tema anterior, mostrando ahora mas propiedades de las funciones circulares, así como realizar el cálculo de la suma y resta de seno, coseno y tangente. Además, abordaremos las funciones circulares del doble de un número y la transformación de productos a sumas y viceversa de estas funciones trigonométricas.
Condicionales y dobles condicionales - [Detalles]
En esta entrada introducimos los conceptos de implicación y doble implicación, así como la tautología.
Problemas de condicionales y cuantificadores - [Detalles]
Resolvemos ejercicios con los conectores lógicos de implicación y doble implicación, así como con cuantificadores existenciales y universales.
Demostración de condicionales y dobles condicionales - [Detalles]
En esta entrada vemos ejemplos de demostraciones con doble implicación, algunas convenciones de su redacción y técnicas de demostración.