Divisibilidad: propiedades básicas - [Detalles]
Demostramos seis propiedades básicas sobre la divisibilidad.
Divisibilidad en los enteros - [Detalles]
Damos la definición de divisibilidad en los enteros. Discutimos algunas propiedades básicas y otras relacionadas con las operaciones y orden.
Algoritmo de la división - [Detalles]
En este apartado se aborda el concepto de divisibilidad y el teorema del algoritmo de la división, con demostraciones, definiciones y problemas resueltos. Este tema corresponde a la Unidad 1 "Divisibilidad", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para ilustrar los conceptos tratados y algunos ejercicios para que el alumno ponga en práctica lo aprendido.
Divisibilidad: definición y primeros ejemplos - [Detalles]
Definimos que significa que un entero "b" sea divisible por "a" (donde "a" es distinto de cero). Damos la notación para simbolizar cuando pasa esto, y cuando no pasa (cuando "b" no es divisible por "a"). Mostramos algunos ejemplos y definimos cuando "a" es divisor de "b".
Divisibilidad algoritmo de la división (versión corregida) - [Detalles]
Mostramos el algoritmo de la división: Un algoritmo mediante el cual podemos obtener el cociente y el residuo de una división, esto también nos sirve para expresar un entero (dividendo) en términos del divisor, cociente y residuo: (dividendo = cociente*divisor + residuo).
Divisibilidad: el máximo común divisor - [Detalles]
Definimos el máximo común divisor (MCD). Primero hacemos la observación de que cada entero tiene un numero finito de divisores, definimos el común divisor, y vemos que el conjunto de divisores de uno o más enteros siempre es finito y podemos obtener un máximo en común (que sea común divisor). Vemos algunos ejemplos y la notación que usaremos para el MCD
El maximo común divisor como combinación lineal entera - [Detalles]
Demostramos un teorema que nos afirma que el máximo común divisor se puede escribir como una combinación lineal de sus dividendos. Hacemos uso de las propiedades de divisibilidad anteriormente vistas y después generalizamos el teorema para el máximo común divisor de un numero arbitrario de enteros.
Divisibilidad y el teorema fundamental de la aritmética - [Detalles]
Usando el teorema fundamental de la aritmética vemos algunas propiedades sobre los exponentes de la descomposición en primos de un divisor y su dividendo. Esto también nos da otro método para obtener el máximo común divisor y el mínimo común múltiplo en términos de la factorización de primos.
Divisibilidad de polinomios - [Detalles]
Damos la definición del grado de un polinomio, el cual es el máximo exponente cuyo coeficiente es distinto de cero. Damos algunos ejemplos de polinomios y obtenemos su grado. También vemos dos propiedades sobre el grado de un polinomio.
División de polinomios - [Detalles]
Definimos la división entre polinomios, dados dos polinomios "a(x), b(x)", decimos que "b(x)" divide a "a(x)" si y solo si "a(x)=b(x)*q(x)" para algún polinomio "q(x)". Vemos algunos ejemplos y también propiedades sobre la divisibilidad.
Problemas de algoritmo de la división, ideales y divisibilidad - [Detalles]
Descripción pendiente
Problemas de divisibilidad y algortimo de Euclides - [Detalles]
Resolvemos ejercicios que ocupan el algortimo de la división de Euclides.
Problemas de grado, evaluación de polinomios, teorema del residuo y del factor - [Detalles]
Resolvemos problemas referentes al tema de polinomios como la evaluación de polinomios, la aplicación de divisibilidad y la aplicación del teorema del factor.
Los números naturales - [Detalles]
En este capítulo de Cimientos matemáticos, nos embarcaremos en lo que es la aritmética, explorando los números primos, así como algunas de sus propiedades más importantes. Comenzaremos revisando algunos conceptos básicos, como los números naturales, los múltiplos, el mínimo común múltiplo (MCM) y el máximo común divisor (MCD). Luego, profundizaremos en la noción de divisibilidad, factorización y la clasificación de los números en primos y compuestos.
Principio de inducción matemática - [Detalles]
En este apartado se abordan los temas de inducción matemática, inducción fuerte y recursividad, con demostraciones de teoremas y proposiciones, junto con definiciones y problemas resueltos. Este tema corresponde a la Unidad 1 "Divisibilidad", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para ilustrar los conceptos tratados y algunos ejercicios para que el alumno ponga en práctica lo aprendido.
Números primos y compuestos - [Detalles]
En este apartado se abordan los conceptos de número primo y número compuesto, con demostraciones, definiciones y problemas resueltos. Este tema corresponde a la Unidad 1 "Divisibilidad", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para identificar si un número es primo o compuesto y algunos ejercicios para que el alumno ponga en práctica lo aprendido.
El algoritmo de Euclides y el máximo común divisor - [Detalles]
En este apartado se aborda el concepto de máximo común divisor (MCD) y se explora el algoritmo de Euclides, el cual sirve para calcular el mcd, incluyendo la versión extendida del algoritmo y el lema de Bézout. Todo acompañado de demostraciones, definiciones y problemas resueltos. Este tema corresponde a la Unidad 1 "Divisibilidad", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para ilustrar los conceptos tratados, y algunos ejercicios para que el alumno ponga en práctica lo aprendido.
Ecuaciones diofantinas lineales - [Detalles]
En este apartado se aborda el tema de ecuaciones diofantinas lineales y se emplea el algoritmo de Euclides para resolverlas, acompañado de demostraciones, definiciones y problemas resueltos. Este tema corresponde a la Unidad 1 "Divisibilidad", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para resolver dos casos particulares de ecuaciones diofantinas lineales y se incluyen algunos ejercicios para que el alumno ponga en práctica lo aprendido.
Teorema fundamental de la aritmética - [Detalles]
En este apartado se demuestra el teorema fundamental de la aritmética y con esto se definen al mínimo común múltiplo (MCM) y a la descomposición canónica, esto acompañado de demostraciones de lemas, corolarios y otros teoremas, así como de otras definiciones y problemas resueltos. Este tema corresponde a la Unidad 1 "Divisibilidad", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para ilustrar los conceptos tratados y se incluyen algunos ejercicios para que el alumno ponga en práctica lo aprendido.
Número y suma de divisores - [Detalles]
En este apartado se abordan las funciones sigma y tau, las cuales están relacionadas con los divisores de un número entero, esto acompañado de demostraciones de proposiciones y corolarios, así como de definiciones y problemas resueltos. Este tema corresponde a la Unidad 1 "Divisibilidad", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para calcular la suma y el número de divisores de un entero, y se incluyen algunos ejercicios para que el alumno ponga en práctica lo aprendido.
Números perfectos, primos de Mersenne y primos de Fermat - [Detalles]
En este apartado se presentan tres clases de números enteros: los números perfectos, los números primos de Mersenne y los números primos de Fermat, esto acompañado de demostraciones de teoremas y proposiciones, así como de definiciones y problemas resueltos. Este tema corresponde a la Unidad 1 "Divisibilidad", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para verificar si un número pertenece a alguna de las tres clases de números previamente mencionadas, y se incluyen algunos ejercicios para que el alumno ponga en práctica lo aprendido.
Función phi de Euler - [Detalles]
En este apartado se aborda la función phi (o "d") de Euler, la cual calcula el número de primos relativos menores a un número entero n, acompañado de demostraciones de teoremas y proposiciones, así como de definiciones y problemas resueltos. Este tema corresponde a la Unidad 1 "Divisibilidad", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para calcular la función phi de euler, y se incluyen algunos ejercicios para que el alumno ponga en práctica lo aprendido.
Función mu y fórmula de inversión de Möbius - [Detalles]
En este apartado se aborda la función mu (o "W") de Möbius, y la fórmula de inversión de Möbius, acompañado de demostraciones de teoremas y proposiciones, así como de definiciones y problemas resueltos. Este tema corresponde a la Unidad 1 "Divisibilidad", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para calcular la función mu de Möbius y para hacer la inversión de Möbius, y se incluyen algunos ejercicios para que el alumno ponga en práctica lo aprendido.