En esta sección hablaremos acerca de ordenes totales, retomaremos el concepto de orden parcial y orden parcial estricto y añadiremos el concepto de ser comparable. Además hablaremos acerca del orden lexicográfico vertical y horizontal.
Teorema de la derivada y la multiplicidad. Demostración - [Detalles]
Damos la demostración del teorema de la derivada y la multiplicidad, el cual vimos en el video anterior. La demostración es relativamente sencilla teniendo en cuenta que sí "a" es de multiplicidad "m" en un polinomio entonces el polinomio es de la forma "(x-a)^m*Q(x)", por lo que podemos obtener su derivada de forma explícita, y demostrar que "a" es raíz de multiplicidad "m-1".
Teorema de la derivada y la multiplicidad. Enunciados y ejemplo - [Detalles]
Vemos un teorema sobre la multiplicidad de la raíz de un polinomio, el cual nos dice que una raíz "a" de multiplicidad "m>1", es también raíz de la derivada del polinomio, con multiplicidad "m-1". También vemos un ejemplo sencillo.
Definición e interpretación geométrica de la derivada.
Derivada de las funciones exponencial y logarítmica - [Detalles]
Demostración de la derivada de las funciones exponencial y logarímica.
Derivada de la función inversa - [Detalles]
Demostración y ejemplos de la derivada de la inversa de una función.
Derivada de las funciones trigonométricas - [Detalles]
Demostración y ejemplos de la derivada de las funciones trigonométricas y sus inversas.
Localización de máximos y mínimos. Monotonía de funciones. - [Detalles]
Estudio de los conceptos máximo y mínimo de una función, la derivada y la monotonía de una función y el Criterio de la primera derivada.
Continuidad y diferenciabilidad de polinomios reales - [Detalles]
Definimos dos términos muy ocupados en general en matemáticas que son los conceptos de continuidad y derivada, éstos términos los definimos en general para funciones pero en nuestro módulo de álgebra lo limitamos a ocuparlo para polinomios, demostramos que todo polinomio es una función continua y también demostramos el teorema de valor intermedio y el teorema de la derivada de polinomios.
Razón de cambio instantáneo y derivada - [Detalles]
Se discute sobre la razón de cambio instantáneo de una función como el límite de razones de cambio en intervalos. Se define la función derivada. Se dan ejemplos de derivadas de funciones como las potenciales, raíz cuadrada, seno y las exponenciales. Se define (informalmente) la coinstante de Euler e.
Intervalos de crecimiento - [Detalles]
En este video se muestra la relación entre el signo de la derivada y la tendencia creciente/decreciente de una función. Al final se establece el criterio de la primera derivada para máximos y mínimos locales.
Cuestionario sobre trigonometría y más sistemas de coordenadas - [Detalles]
Ponemos en práctica el módulo de trigonometría para una mejor preparación al presentar un examen parcial de etse tema. Al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.
La relación de orden en $\mathbb{N}$ - [Detalles]
Definimos el orden en los números naturales y se demuestra primero que es parcial y después que éste es total.
El orden de los enteros - [Detalles]
Definimos el orden en los números enteros y se demuestra primero que es parcial y después que éste es total.
Álgebra Moderna I: Subgrupo Conjugado, Subgrupo Normal y Conmutatividad Parcial - [Detalles]
En esta entrada definiremos un producto entre dos clases izquierdas usando el producto en G. Para lo cual necesitamos dar formalmente que es un conjugado y un subgrupo N normal de G.
Órdenes parciales y totales - [Detalles]
En esta entrada revisamos los conceptos de orden parcial, total. Así como elementos maximales, minimales, máximos y mínimos.
Tangentes a curvas paramétricas - [Detalles]
Estudio de la derivada a las curvas parametricas
Derivabilidad y continuidad - [Detalles]
Relación entre derivabilidad y continuidad y revisión de las primeras reglas de derivación (derivada de las operaciones con funciones).
Regla de la cadena - [Detalles]
Demostración de la derivada de composición de funciones y la regla de la cadena.
Reglas de derivación - [Detalles]
Resumen de las reglas de derivación y demostración de la derivada de funciones frecuentes.
Derivadas implícitas y de orden superior - [Detalles]
Revisión de los conceptos de derivada implícita y de orden superior.
Regla de L’’Hôpital - [Detalles]
Estudio de los límites a través de la derivada: regla de L’’Hôpital.
Rectas tangente y normal a una curva - [Detalles]
Revisión de ejercicios donde haciendo uso de la derivada obtenemos la recta normal y tangente a una curva.
Localización de máximos y mínimos. Regiones de convexidad y puntos de inflexión. - [Detalles]
Revisión del Criterio de la segunda derivada para encontrar máximos y mínimos de una función. Estudio de los conceptos convexidad, concavidad y puntos de inflexión.
Revisión de problemas de razón de cambio haciendo uso de la derivada.
Problemas de continuidad y derivadas de polinomios - [Detalles]
Resolvemos ejercicios de continuidad y de derivada en los polinomios así como de raíces reales.
El teorema de derivadas y multiplicidad - [Detalles]
Construimos un método por el cual a través de derivadas podamos determinar la multiplicidad de las raíces de un polinomio esto a través del teorema de multiplicidad y derivadas, también con ayuda de la simplificación de un polinomio para encontrar sus raíces, este método se basa en los conocimientos adquiridos en otra entrada que es calculas el máximo común divisor entre el polinomio y su derivada.
Problemas de raíces múltiples y raíces racionales de polinomios - [Detalles]
Resolvemos ejercicios en los cuales ocupamos las herramientas sobre la continuidad, derivada de polinomios, multiplicidad y la aplicación del criterio de la raíz racional.
16. Diferenciabilidad en el sentido complejo - [Detalles]
Introducimos por fin el concepto de diferenciabilidad en el sentido complejo, veremos la definición de derivada de una función compleja y estudiaremos cuando una función es derivable y cuando no y las propiedades de estas.
Presentación del curso de Calculo Diferencial e Integral I - [Detalles]
En este video se presentará el contenido del curso de Cálculo Diferencial e Integral I. Se exponen de manera informal los problemas que motivan el Cálculo Diferencial e Integral y se enfatiza la necesidad de la discusión profunda de los conceptos de aproximación (supremos/ínfimos, límites) como fundamento del Cálculo. Presentación del curso de Calculo Diferencial e Integral I Contenido: 00:00 ¿Qué significa "cálculo"? 02:37 ¿Qué se entiende actualmente por cálculo? 04:15 ¿Qué es el Cálculo Diferencial? 07:02 ¿Qué es el Cálculo Integral? 08:27 Relación entre el Cálculo Diferencial e Integral 09:27 La Derivada 11:27 La Integral 11:54 El Análisis Real 15:05 Temario del Curso: 1. Números Reales 17:03 Temario del Curso: 2. Conjuntos y Funciones de Números Reales 18:50 Temario del Curso: 3. Límites de Funciones de Variable Real 19:24 Temario del Curso: 4. Continuidad 20:30 Temario del Curso: 5. Derivadas Créditos. Tabla de contenido: Carlos Moisés Arriaga Osante.