Conjugación y conjugados - [Detalles]
Se define la relación de conjugación entre elementos de un grupo, y también la conjugación entre subgrupos.
Conjugación como relación de equivalencia - [Detalles]
Se explica la relación de conjugación y se demuestran algunas propiedades, se define el centro de un grupo.
Centralizadores y clases de conjugación - [Detalles]
Se definen los centralizadores y se exploran propiedades de las clases de conjugación.
Álgebra Moderna I: Teoremas y Proposiciones relacionadas con subgrupos normales y grupo Alternante. - [Detalles]
Es fácil verificar que toda clase lateral derecha es una clase lateral izquierda y viceversa. En esta entrada, nos centraremos en demostrar formalmente este resultado y otros teoremas mas que sumen a las propiedades de subgrupos normales y el grupo alternante.
La conjugación de números complejos - [Detalles]
Definimos la operación conjugado en el campo de los reales, enunciamos propiedades del conjugado y demostramos algunas de ellas. De igual manera definimos la parte real e imaginaria de un número compleja y sus relaciones con el conjugado.
Problemas de conjugación compleja - [Detalles]
Resolvemos ejercicios básicos sobre el conjugado de los complejos.
Subgrupos conjugados y normalizadores - [Detalles]
Se define la relación de conjugación entre subgrupos de un grupo y se definen los normalizadores.
2. El campo de los números complejos $\mathbb{C}$ - [Detalles]
En esta entrada de blog se presentan formalmente al sistema de números complejos como un campo, introduciendo las operaciones de suma y producto, así como la conjugación.
Particiones, relaciones y clases de equivalencia - [Detalles]
Definimos un tipo especial de relación entre conjuntos, la Relación de equivalencia, y cuáles son las 3 propiedades que debe cumplir, también hablamos de la clase de equivalencia y la partición de una relación de equivalencia
Ejemplo de clase de equivalencia y partición - [Detalles]
Continuamos con el ejemplo anterior sobre las relaciones de equivalencia, damos las clases de equivalencia y la particione de la relación de equivalencia con elementos del plano cartesiano.
Sistemas de residuos módulo $m$ - [Detalles]
Damos la definición de un sistema completo de residuos modulo "m". El cual es un conjunto donde cada elemento sirve como un representante de una clase de equivalencia de la relación de congruencia. También definimos un sistema reducido de residuos modulo "m". Damos la definición de la función de Euler, y vemos un teorema que nos ayuda a conocer el valor de la función de Euler.
Diapostivas sobre relaciones de equivalencia - [Detalles]
Partimos de una definición de las diapositivas anteriores y de las definiicones de relaciones reflexivas, simétricas y transitivas, la relación que cumpla con estas 3 se llama una relación de equivalencia y de esta nueva definición se desprende las definiciones de clase de equivalencia y particiones, estas ideas se ilustran con más ejemplos.
Construcción de los enteros y su suma - [Detalles]
Construimos el conjunto de los números enteros a partir de los números naturales, definimos a un número entero como una clase de equivalencia, definimos su operación suma y su inverso; también demostramos algunas propiedades básicas de la operación suma en los enteros.
Clases laterales - definición y ejemplos - [Detalles]
Se da la definición de clase lateral y se presentan ejemplos.
Nota 13. Relación de equivalencia. - [Detalles]
En esta nota introducimos el concepto de relación de equivalencia, un tipo de relación muy útil que cumple tres propiedades: reflexividad, simetría y transitividad. También vemos el concepto de clase de equivalencia el cual deriva de este tipo de relación.
Área de Figuras Irregulares - [Detalles]
En este video (basado en el libro de Tom Apostol) se comenta un ejemplo elocuente del cálculo del área de cierta figura geométrica irregular, considerando aproximaciones por defecto y por exceso. Este video será exhibido y comentado en la clase del lunes 20 de septiembre de 2021.
Implementación con orientación a objetos, Interfaz ILista (agregar I a Lista) - [Detalles]
Interfaz ILista (agregar I a Lista) - Principio del encapsulamiento al aplicar la interfaz ILista. Implementar la clase Nodos. Programar listas simplemente ligadas.
Implementación con orientación a objetos, Agregar al final - [Detalles]
Agregar al final - Cómo usar la clase listasimple para agregar objetos al final de las listas.
Implementación con orientación a objetos, Insertar en cualquier posición - [Detalles]
Insertar en cualquier posición - Qué clase usar para insertar en cualquier posición dependiendo del caso.