COMAL: Topología Algebraica I - [Detalles]
Curso de introducción a la topología algebraica. Comenzamos hablando del grupo fundamental. Luego, estudiamos el teorema de Van Kampen. Continuamos con varios temas de espacios cubrientes. Finalmente hablamos del concepto de homología y varios resultados alrededor de él. Material recopilado en Matemáticas a Distancia con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522.
Pre-requisitos y bibliografía para topología algebraica - [Detalles]
Hablamos de los pre-requisitos y bibliografía para este curso de Topología Algebraica.
¿Qué estudiamos en topología algebraica? - [Detalles]
En este video se explica de manera muy general, amplia y no muy concreta, de qué trata la topología algebraica
Caminos y homotopías | Grupo fundamental | Topología algebraica - [Detalles]
En este video se comienza a preparar el camino para definir, posteriormente, el grupo fundamental de un espacio topológico.
La homotopía de caminos rel 0,1 es una relación de equivalencia - [Detalles]
En este video se continua preparando el camino para definir el grupo fundamental de un espacio topológico. El objetivo del video es mostrar que la relación de homotopía de caminos rel 0,1 es una relación de equivalencia.
Definición del grupo fundamental - [Detalles]
En este video definimos el grupo fundamental (como conjunto solamente) de un espacio X basado en un punto x_0. En el siguiente video se verá que el grupo fundamental es un grupo con la operación de concatenación de caminos.
El grupo fundamental es, en efecto, un grupo - [Detalles]
En este video demostramos que el grupo fundamental es un grupo con la operación dada por concatenar lazos.
Cambio de punto base para el grupo fundamental - [Detalles]
En este video estudiamos la (in)dependencia del grupo fundamental respecto del punto base.
El grupo fundamental del círculo - parte 1 - [Detalles]
En este video comenzamos el estudio del grupo fundamental del círculo.
El grupo fundamental del círculo - parte 2 - [Detalles]
En este video terminamos el estudio del grupo fundamental del círculo. Concretamente, demostramos que el grupo fundamental del círculo es cíclico infinito.
Demostración del teorema fundamental del álgebra usando el grupo fundamental del círculo - [Detalles]
En este video damos una demostración hermosa del teorema fundamental del álgebra usando e hecho de que el grupo fundamental del círculo es cíclico infinito.
El teorema del punto fijo de Brouwer en dimensión 2 - [Detalles]
En este video demostramos el teorema del punto fijo de Brouwer.
El teorema de Borsuk-Ulam en dimensión 2 - [Detalles]
En este video demostramos el teorema de Borsuk-Ulam en dimensión 2.
El grupo fundamental de un producto - [Detalles]
En este video demostramos que el grupo fundamental de un producto de espacios topológicos es el producto de los grupos fundamentales de los factores, es decir, el grupo fundamental abre productos.
Homomorfismos inducidos - [Detalles]
En este video demostramos que cualquier función entre espacios topológicos induce una homomorfismo entre grupos fundamentales (con puntos bases adecuados).
El grupo fundamental de la n-esfera - [Detalles]
En este video demostramos que el grupo fundamental de las esferas de dimensión al menos 2 es trivial. Este cálculo nos sigue dando herramientas para desarrollar intuición acerca del grupo fundamental.
R^2 no es homeomorfo a R^n si n es diferente de 2 - [Detalles]
En este video demostramos que R^2 no es homeomorfo a R^n si n es diferente de 2. Para demostrar esto usamos el cálculo de los grupos fundamentales de las esferas. Este resultado es otro ejemplo de cómo usar nuestros invariantes algebraicos (el grupo fundamental) para resolver problemas en topología.
Homotopias entre funciones - [Detalles]
En este video definimos homotopía entre funciones y homotopías que preservan el punto base. Luego demostramos que las homotopías que preservan el punto base inducen el mismo homomorfismo en grupos fundamentales.
Homotopias y homomorfismos inducidos - [Detalles]
En este video demostramos un resultado que tiene que ver con cómo se comportan los homomorfismos inducidos respecto de homotopías que no preservan el punto base.
En este video comenzamos un pequeño detour por la teoría de grupos. Definiremos lo que es un grupo libre y enunciaremos su propiedad universal.
En este video continuamos nuestro pequeño detour por la teoría de grupos. Definiremos el producto libre de grupos y su propiedad universal.
Subgrupos normalmente generados - [Detalles]
En este video terminamos nuestro pequeño detour por la teoría de grupos. Definiremos el subgrupo normalmente generado por un subconjunto de un grupo G.
El enunciado del teorema de van Kampen - [Detalles]
En este video damos una breve motivación para el enunciado del teorema de van Kampen. El video lo terminamos con el enunciado formal de dicho teorema. En un video posterior daremos la demostración. Espero que lo disfruten.
La demostración del teorema de van Kampen - [Detalles]
En este video damos la demostación del teorema de van Kampen. Este teorema es la herramienta computacional más poderosa para calcular grupos fundamentales.
Presentaciones de grupos - [Detalles]
En este video definimos lo que es una presentación de un grupo y damos algunos ejemplos.
Todo grupo es el grupo fundamental de algún espacio - [Detalles]
En este video demostraremos que todo grupos es el grupo fundamental de algún espacio. Las herramientas principales para demostrar este teorema es la existencia de una presentación y una aplicación muy directa del teorema de van Kampen.
El grupo fundamental no detecta células de dimensió mayor que 2 - [Detalles]
En este video demostraremos que el grupo fundamental queda inalterado si adjuntamos o pegamos una célula de dimensión mayor que dos a un espacio.
Definición de proyección cubriente - [Detalles]
En este video comenzamos nuestro estudio de espacios (o proyecciones) cubrientes. Damos la definición y algunos ejemplos.
La propiedad de levantamiento de homotopías para cubrientes - [Detalles]
En este video demostramos una de las propiedades más importantes de los espacio cubrientes: el teorema de levantamiento de homotopías. En videos posteriores veremos algunas consecuencias de este enunciado.
El homomorfismo inducido por un cubriente - [Detalles]
En este video demostramos que el homomorfismo inducido en grupos fundamentales por una proyección cubriente es inyectivo. Este resultado es una consecuencia del teorema de levantamiento de homotopías.
El número de hojas de un cubriente y su grupo fundamental - [Detalles]
En este video demostramos que el número de hojas de un cubriente (con espacio base y espacio cubriente arco-conexos) está en correspondencia con el número de clases laterales de la imagen del grupo fundamental del espacio cubriente, en el grupo fundamental del espacio base.
Un criterio de levantamiento de funciones - [Detalles]
En este video demostramos un criterio que nos dice exactamente cuándo existe un levantamiento de una función con dominio arbitrario.
Unicidad del levantamiento de funciones - [Detalles]
En este video demostramos que si dos levantamientos de una función coinciden en al menos un punto, entonces coinciden en todo su dominio (siempre que el dominio sea conexo).
El cubriente universal - parte 1 - [Detalles]
En este video definimos una condición necesaria para que un espacio tenga cubriente universal: la noción de ser semi-localmente simplemente conexo.
El cubriente universal - parte 2 - [Detalles]
En este video definimos el cubriente universal (de un espacio que satisface ciertas condiciones) en términos de clases de homotopía de caminos en el espacio base que comienzan en un punto base fijo. En videos posteriores mostraremos que el espacio que definimos en este video es, en efecto, el cubriente universal del espacio con el que comenzamos.
El cubriente universal - parte 3 - [Detalles]
En este video construimos con todo detalle el cubriente universal de un espacio arco-conexo, localmente arco-conexo y semi localmente simplemente conexo.
El teorema de clasificación de cubrientes - parte 1 - [Detalles]
En este video demostramos que dado un subgrupo H del grupo fundamental de X, existe un cubriente tal que su grupo fundamental es isomorfo a H.
El teorema de clasificación de cubrientes - parte 2 - [Detalles]
En este video demostramos que dado un subgrupo H del grupo fundamental de X, existe un único cubriente tal que su grupo fundamental es isomorfo a H.
El teorema de clasificación de cubrientes - parte 3 - [Detalles]
En este video demostramos finalmente el teorema de clasificación de cubrientes. Es decir, establecemos una biyección entre el conjunto de subgrupos del grupo fundamental y clases de isomorfismo de cubrientes.
Transformaciones de cubierta - parte 1 - [Detalles]
En este video definimos el grupo de transformaciones de cubierta, damos algunos ejemplos y definimos cubriente normal.
Transformaciones de cubierta - parte 2 - [Detalles]
En este video demostramos el teorema que relaciona el grupo de transformaciones de cubierta de un cubriente con el grupo fundamental del espacio base.
Top Alg Posgrado semana 7.2 - [Detalles]
None
Álgebra homológica - complejos de cadenas - [Detalles]
En este video comenzamos a estudiar álgebra homológica desde un punto de vista puramente algebraico. Definimos complejos de cadenas, subcomplejos, complejos cociente, homología y funciones inducidas.
Álgebra homológica - homotopías - [Detalles]
En este video definimos homotopías entre homomorfismos de complejos de cadenas. Además demostrarmos que funciones homotópicas inducen funciones iguales en homología.
Álgebra homológica - sucesiones exactas - [Detalles]
En este video definimos sucesiones exactas. Este video introduce notación que será muy usada en videos posteriores.
Álgebra homológica - el lema de la serpiente - [Detalles]
En este video enunciamos y demostramos el "lema de la serpiente". Este lema será usado en la demostración del teorema fundamental del álgebra homológica.
Álgebra homológica - el teorema fundamental del álgebra homológica - [Detalles]
En este video enunciamos y demostramos el teorema fundamental del álgebra homológica. Seguramente el teorema más importante en esta área.
Álgebra homológica - naturalidad del homomorfismo de conexión - [Detalles]
En este video demostramos la naturalidad del homomorfismo de conexión. Dicha naturalidad es en el sentido de la teoría de categorías.
Álgebra homológica - el lema de los cinco - [Detalles]
En este video enunciamos y demostramos "el lema del cinco", el cual es un resultado fundamental y elemental en álgebra homológica. Este lema nos será muy útil más adelante.
Homología singular - simplejos - [Detalles]
En este video comenzaremos a preparar el camino para definir la homología singular de un espacio. Definiremos lo que es un n-simplejo, el n-simplejo estándar y hablaremos un poco de su estructura combinatorica.
Homología - el complejo de cadenas singulares - [Detalles]
En este video definiremos el complejo de cadenas singulares usando funciones del n-simplejo estándar a un espacio topológico X.
Homología singular - definición de homología singular - [Detalles]
En este video por fin definiremos la homología singular de un grupo X. Estos objetos (grupos abelianos o R-módulos) serán nuestro principal objeto de estudio en lo que resta de esta lista de reproducción.
Homología singular - la homología y las componentes arco-conexas - [Detalles]
En este video veremos cómo calcular el 0-ésimo grupo de homología singular y su relación con las componentes arco-conexas de nuestro espacio.
Homología singular - el 0-ésimo grupo de homología - [Detalles]
En este video veremos que el 0-ésimo grupo de homología singular es la suma de copias de los coeficientes, una por cada componente arco-conexa del espacio.
Homología singular - la homología de un punto - [Detalles]
En este video haremos nuestro primer cálculo explícito de los grupos de homología de un espacio. El espacio en cuestión es el espacio que consiste de un solo punto.
Homología singular - homología reducida - [Detalles]
En este video definiremos una ligera variante de la homología singular, lo que se conoce como homología reducida. Esta homología reducida es, en ocasiones, más conveniente a la hora de hacer cuentas.
Homología singular - grupo fundamental vs primer grupo de homología: parte 1 - [Detalles]
En este video demostramos algunos lemas preliminares que usaremos para demostrar que el abelianizado del grupo fundamental de X es isomorfo al primer grupo de homología de X, siempre que X sea arco-conexo.
Homología singular - grupo fundamental vs primer grupo de homología - parte 2 - [Detalles]
En este video demostramos que la función del grupo fundamental de X al primer grupo de homología de X está bien definida y es un homomorfismo. Además demostramos que si X es arco-conexo entonces dicho homomorfismo en suprayectivo. Calcularemos el kernel en el siguiente video.
Homología singular - funtorialidad - [Detalles]
En este video mostraremos que funciones continuas entre espacios topológicos inducen funciones de complejos de cadenas singulares y, por lo tanto, funciones entre grupos de homología.
Homología singular - invarianza homotópica - [Detalles]
En este video demostraremos una de las propiedades fundamentales de la homología, es decir, que funciones homotópicas inducen funciones iguales en homología. La demostración es un poco larga e involucra cuentas que están relacionadas con la combinatoria del n-simplejo estándar.
Homología singular - homología realtiva - [Detalles]
En este video definimos los grupos de homología relativa y la sucesión exacta larga de la pareja.
Homología singular - más acerca de la homología de la pareja - [Detalles]
En este video veremos que la invarianza homotópica también es cierta para homología de parejas.
Homología singular - la sucesión exacta de la tercia - [Detalles]
En este video deducimos una sucesión exacta larga que involucra grupos de homología relativas de tres espacios Z contenido en Y y Y contenido en X. Esta sucesión es muy parecida a la sucesión exacta larga de la pareja y se deduce usando el teorema fundamental del álgebra homológica.
Homología singular - escisión - [Detalles]
En este video enunciaremos en teorema de escisión sin demostración. Este teorema es una de las propiedades fundamentales de la homología y nos dice que siempre que tomemos homología relativa, podemos ignorar lo que pasa adentro del subespacio con el que estamos relativizando.
Homología singular - la homología de un cociente - [Detalles]
En este video demostraremos que la homología de la (buena) pareja (X,A) es isomorfa a la homología reducida del cociente X/A. La demostración hace uso del teorema de escisión.
Homología singular - la homología de una esfera - [Detalles]
En este video calcularemos la homología de una esfera. Este cálculo hará uso de la sucesión exacta del cociente, la cual, a su vez es consecuencia de muchos de los teoremas que ya hemos visto.
Homología singular - el teorema del punto fijo de Brouwer - [Detalles]
Como aplicación del cálculo de la homología de una esfera demostraremos el teorema del punto fijo de Brouwer en dimensiones arbitrarias. La estrategia es idéntica a la que ya usamos para demostrar el teorema de Brouwer en dimensión 2 con el grupo fundamental.
Homología singular - la homología de una cuña - [Detalles]
En este video demostraremos que la homología de una cuña es isomorfa a la suma directa de las homologías de los espacios con los que estamos haciendo cuña.
Homología singular - invarianza de la dimensión - [Detalles]
En este video demostraremos que si dos abiertos de ciertos espacios euclideanos son homeomorfos, entonces los espacios tienen la misma dimensión. Este teorema es muy bonito porque es intuitivo el enunciado, la demostración no es nada trivial, pero con toda la herramienta que hemos desarrollado es posible demostrarlo en términos simples.
Homología singular - generadores para la homología de la esfera - [Detalles]
En este video calculamos explícitamente un generador para la homología enésima de la n-esfera con coeficientes en los enteros. Esta cuenta no es trivial y usamos muchos de los resultados obtenidos anteriormente.
Homología singular - El grado de una función entre esferas - [Detalles]
En este video definimos el grado de una función entre esferas y estudiamos sus propiedades básicas.
Homología singular - campos vectoriales en la esfera - el teorema de la bola peluda - [Detalles]
En este video demostramos que las únicas esferas que tienen campos vectoriales que no se hacen cero en ninguna parte son las de dimensión impar. Esto implica el teorema de la bola peluda, es decir, que todo campo vectorial sobre la esfera tienen un cero.
Homología singular - acciones libres en la esfera - [Detalles]
En este video demostramos el único grupo que puede actuar libremente en una esfera de dimensión par es el grupo cíclico con dos elementos.
Complejos CW - definición - [Detalles]
En este video definiremos complejo CW, un tipo muy particular de espacio que se estudian en topología algebraica. Muchos de los espacios que nos son familiares son complejos CW, por ejemplo, las esferas, los espacios proyectivos y las superficies.
Complejos CW - ejemplos gráficas y esferas - [Detalles]
En este video daremos nuestros primeros ejemplos de complejos CW.
Complejos CW - ejemplos - los espacios proyectivos - [Detalles]
En este video daremos la definición de los espacios proyectivos. Luego describiremos una estructura celular en dichos espacios.
Complejos CW - funciones características y subcomplejos - [Detalles]
En este video definiremos lo que es una función característica y lo que es un subcomplejo de un complejo CW. Además daremos algunos ejemplos ilustrativos.
Complejos CW - productos - [Detalles]
En este video definiremos explicaremos cómo dar una estructura celular al producto de dos complejos CW.
Complejos CW - cocientes - [Detalles]
En este video daremos una estructura celular al cociente de un complejo CW con un subcomplejo.
Complejos CW - cono y suspensión - [Detalles]
En este video definimos el cono y la suspensión de un espacio. Luego mostramos que si el espacio es un complejo CW, entonces su cono y su suspensión también lo son.
Homología celular - la homología singular de un complejo CW - [Detalles]
En este video demostramos algunas propiedades de la homología celular de los complejos CW. Estos resultados serán la base para definir la homología celular.
Homología celular - definición y equivalencia con homología singular - [Detalles]
En este video definimos la homología celular y vemos que es isomorfa a los grupos de homología singular.
Homología celular - consecuencias de la definición - [Detalles]
En este video vemos algunas consecuencias de la definición de la homología celular. Estas consecuencias nos sirven para ver algunas ventajas que tiene la homología celular sobre la singular.
Homología celular - una fórmula para el homomorfismo frontera - [Detalles]
En este video damos una fórmula explícita para el homomorfismo frontera en el complejo de cadenas celular. Esto termina de establecer cómo se comporta el complejo de cadenas celular de un complejo CW.
Homología celular - ejemplo - una cuña de círculos - [Detalles]
En este video explicamos cómo calcular la homología de una cuña de círculos usando el complejo de cadenas celular.
Homología celular - ejemplo - superficies - [Detalles]
En este video explicamos cómo calcular la homología de una suma conexa de toros.
Homología celular - ejemplos - espacios proyectivos - [Detalles]
En este video explicamos cómo calcular la homología de los espacios proyectivos con diferentes coeficientes.
Homología celular - característica de Euler - [Detalles]
En este video definimos la característica de Euler de un complejo CW finito. Luego, demostramos que la característica de Euler es un invariante homotópico.
Homología singular - la sucesión de Mayer-Vietoris - [Detalles]
En este video definimos la sucesión de Mayer-Vietoris de la unión de dos espacios, y damos un pequeño ejemplo de cómo usarla.
Objeto de ejemplo - [Detalles]
Ejemplo
25. Transformaciones lineales y transformaciones de Möbius - [Detalles]
Ahora revisemos un tipo de transformaciones complejas mas interesantes, de cierto tipo que nos permiten observar más geometría en el plano complejo.
Definición de grupos de homotopía - [Detalles]
Definimos una operación en los grupos de homotopía y probamos que está bien definida.
La categoría de homotopía - [Detalles]
Definimos una categoría en donde los isomorfismos son las equivalencias homotópicas
Espacios H y grupos H - [Detalles]
Definimos una versión homotópica de los grupos topologícos
Espacios H apartir de su conjunto de homotopía - [Detalles]
La operación en los groups de homotopía - [Detalles]
Vemos que la operación en los grupos pi_n esta bien definida
Los grupos de homotopía sí son grupos - [Detalles]
Probamos que pi_n satisface las propiedades de grupo.
La suma en pi_n no depende de la coordenada - [Detalles]
Vemos que hay otra manera de definir la suma en los grupos de homotopía y es equivalente a la operación que ya habíamos visto
Los grupos de homotopía superiores son abelianos - [Detalles]
Probamos que cuando n es mayor a 1 tenemos que pi_n es un grupo abeliano
Clases de homotopía de funciones con domino la n-esfera - [Detalles]
Vemos una manera equivalente de definir los grupos de homotopía
En un espacio arco conexo no importa el punto base - [Detalles]
Probamos que si X es un espacio topológico arco conexo entonces pi_n(X,a) es isomorfo a pi_n(X,b) para cualesquiera a y b en X
Equivalencia homotópica implica equivalencia homotópica debil - [Detalles]
Un mapeo entre espacios se dice que es una equivalencia homotópica débil si induce isomorfismos en todos los grupos de homotopía. En este video probamos que todas las equivalencias homotópicas son equivalencias homotópicas débiles.
Grupos de homotopía de un espacio H - [Detalles]
En este video vemos que si X es un espacio H entonces la operación en pi_n es la misma que la operación en X visto como espacio H
Acción del grupo fundamental - [Detalles]
Vemos que el grupo pi_1 actúa en los grupos de homotopía superiores
Functorialidad de los grupos de homotopía - [Detalles]
Vemos que pi_n forma un functor de la categoría de espacios topológicos a la categoría de grupos
Grupos de homotopía de un producto - [Detalles]
Vemos una fórmula para pi_n(X x Y)
Grupos de homotopía relativos - [Detalles]
Si tenemos un espacio X y un subespacio A podemos definir un grupo pi_n(X,A,*)
Sucesión exacta larga de grupos de homotopía relativos - [Detalles]
Vemos que si tenemos una filtración de espacio A <B <X entonces podemos formar una sucesión exacta larga con los grupos de homotopía relativos de estos espacios. Esta sucesión sirve mucho para hacer calculos.