Multiplicidad de una raíz - [Detalles]
Definimos la multiplicidad de una raíz. La cual es el numero "m" tal que es el mayor entero para el cual "(x-a)^m" divide al polinomio. Damos algunos ejemplos para saber cómo identificar la multiplicidad de alguna raíz.
Teorema de la derivada y la multiplicidad. Enunciados y ejemplo - [Detalles]
Vemos un teorema sobre la multiplicidad de la raíz de un polinomio, el cual nos dice que una raíz "a" de multiplicidad "m>1", es también raíz de la derivada del polinomio, con multiplicidad "m-1". También vemos un ejemplo sencillo.
Teorema de la derivada y la multiplicidad. Demostración - [Detalles]
Damos la demostración del teorema de la derivada y la multiplicidad, el cual vimos en el video anterior. La demostración es relativamente sencilla teniendo en cuenta que sí "a" es de multiplicidad "m" en un polinomio entonces el polinomio es de la forma "(x-a)^m*Q(x)", por lo que podemos obtener su derivada de forma explícita, y demostrar que "a" es raíz de multiplicidad "m-1".
Continuidad y diferenciabilidad de polinomios reales - [Detalles]
Definimos dos términos muy ocupados en general en matemáticas que son los conceptos de continuidad y derivada, éstos términos los definimos en general para funciones pero en nuestro módulo de álgebra lo limitamos a ocuparlo para polinomios, demostramos que todo polinomio es una función continua y también demostramos el teorema de valor intermedio y el teorema de la derivada de polinomios.
Problemas de continuidad y derivadas de polinomios - [Detalles]
Resolvemos ejercicios de continuidad y de derivada en los polinomios así como de raíces reales.
El teorema de derivadas y multiplicidad - [Detalles]
Construimos un método por el cual a través de derivadas podamos determinar la multiplicidad de las raíces de un polinomio esto a través del teorema de multiplicidad y derivadas, también con ayuda de la simplificación de un polinomio para encontrar sus raíces, este método se basa en los conocimientos adquiridos en otra entrada que es calculas el máximo común divisor entre el polinomio y su derivada.
El criterio de la raíz racional - [Detalles]
Estudiamos el criterio de la raíz racional el cual nos permite determinar las únicas raíces racionales que puede tener un polinomio de coeficiente enteros, asimismo mostramos una aplicación directa, una indirecta y una con un polinomio de coeficientes racionales.
Problemas de raíces múltiples y raíces racionales de polinomios - [Detalles]
Resolvemos ejercicios en los cuales ocupamos las herramientas sobre la continuidad, derivada de polinomios, multiplicidad y la aplicación del criterio de la raíz racional.
Raíces de polinomios de grados 3 y 4 - [Detalles]
Mostramos formas para encontrar las raíces de los polinomios de grado tres, cuatro y hablaremos sobre polinomios con grados más altos; para encontrar las raíces de estos polinomios de grado tres ocupamos el método Cardano y para polinomios de grado cuatro el método de Ferrari.
Ejemplos de solución de ecuaciones de grados 3, 4 y más - [Detalles]
Resolvemos ejercicios en los cuales se pide que encontremos las raíces de un polinomio de grado 3 con el método de Cradano, de grado 4 con el método de Ferrari y de grados mayores.