16. Diferenciabilidad en el sentido complejo - [Detalles]
Ahora si, veamos esas derivadas...
17. Ecuaciones de Cauchy-Riemann. Condiciones necesarias para la diferenciabilidad compleja - [Detalles]
Veamos una primera entrada de las ecuaciones C-R.
18. Ecuaciones de Cauchy-Riemann. Condiciones suficientes para la diferenciabilidad compleja - [Detalles]
Ahora chequemos más propiedades de las ecuaciones C-R.
19. Consecuencias de las ecuaciones de Cauchy-Riemann - [Detalles]
Repasaremos un par de propiedades que se derivan de las ecuaciones de C-R.
16. Diferenciabilidad en el sentido complejo - [Detalles]
Introducimos por fin el concepto de diferenciabilidad en el sentido complejo, veremos la definición de derivada de una función compleja y estudiaremos cuando una función es derivable y cuando no y las propiedades de estas.
17. Ecuaciones de Cauchy-Riemann. Condiciones necesarias para la diferenciabilidad compleja - [Detalles]
En esta entrada conoceremos lo que son las ecuaciones de Cauchy-Riemann y su utilidad para estudiar la analicidad en funciones de variable compleja.
18. Ecuaciones de Cauchy-Riemann. Condiciones suficientes para la diferenciabilidad compleja - [Detalles]
Seguimos con las ecuaciones de Cauchy-Riemann y ahora vemos mas propiedades acerca de las funciones que satisfacen estas ecuaciones.
19. Consecuencias de las ecuaciones de Cauchy-Riemann - [Detalles]
En las entradas anteriores vimos las ecuaciones de Cauchy-Riemann, hemos deducido las ecuaciones de C-R y hemos visto que dichas condiciones nos permiten caracterizar por completo la diferenciabilidad en el sentido complejo. En esta entrada abordaremos algunos resultados que son consecuencia directa de las ecuaciones ya mencionadas.