En esta entrada continuaremos recordando algunas propiedades vistas previamente enfocándonos en el teorema de Gauss y su demostración. Esto nos dará una pequeña pista de la relación entre las formas cuadráticas y matrices. Además, con el teorema de Gauss obtendremos un algoritmo para poder escribir cualquier forma cuadrática en una forma estandarizada. Esto nos llevará más adelante a plantear la ley de inercia de Sylvester.
Problemas de formas bilineales, cuadráticas y teorema de Gauss - [Detalles]
En esta entrada veremos un par de problemas para seguir repasando formas bilineales y cuadráticas y luego veremos al teorema de Gauss en acción.